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Abstract—Individuals in social networks are often organized
under some hierarchy such as a command structure. In many
cases, when this structure is unknown, there is a need to discover
hierarchical organization. In this paper, we propose a novel,
simple, and flexible method based on maximum likelihood to infer
social hierarchy from weighted social networks. We empirically
evaluate our method against both simulated and real-world
datasets and show that our approach accurately recovers the
underlying, latent hierarchy.

I. INTRODUCTION AND MOTIVATION

From troops of baboons to employees in corporations,
individuals in a society are often organized by some notion
of rank or status. Many mammal, bird, and insect species are
organized into dominance hierarchies. Similarly, a corporation
is structured as an organizational chart with the CEO at the
root of the hierarchy. Indeed, recent human imaging studies
have revealed that the brain is, in fact, “hard-wired for hier-
archy” with specific areas of neural circuitry being associated
with social standing and rank [1]. Often times, this underlying
social structure is unknown and must be inferred for various
applications. For instance, inferences of animal hierarchies
help biologists shed light on the species under study, and
discovery of the hierarchical organization of terrorist networks
is relevant to intelligence analysis and national defense.

Hierarchy may be inferred from interactions among indi-
viduals. The hierarchical structure of a population shapes the
nature of the social interactions of individuals and, thus, the
structure of the underlying social network. With the increased
availability of social network data for humans and other
social species, it is now possible to understand the connection
between the nature of interactions in a network and hierarchy.
Surprisingly, there is little work on the automated inference
of social hierarchies from networks, and existing approaches
often make assumptions about the data that may be unwar-
ranted in some circumstances. Social networks are normally
represented by graphs in which the nodes represent individuals
and the edges represent associations between the individuals.
In this paper, we propose a novel, flexible method to infer
social hierarchies in weighted, undirected social networks
using maximum likelihood. Specifically, our contributions in
this paper are as follows:

• We provide an overview of existing work on the inference

of social hierarchy across a variety of different disciplines
from biology to sociology to computer science.

• We propose a formal framework for treating hierarchies
as probabilistic, generative models for social networks
and show how this framework may be used to measure
the likelihood of hierarchical structures given a network.

• We propose a simple optimal algorithm to recover the
maximum likelihood hierarchy from a weighted social
network.

• We empirically evaluate our approach against both simu-
lated and real-world datasets and show that it accurately
recovers the underlying hierarchy.

II. RELATED WORK

Biologists have studied and have attempted to infer social
hierarchies since the 1920s when Thorleif Schjelderup-Ebbe
discovered that hens were organized by a strict, pecking
order [2]. Biologists infer hierarchy by first constructing a
dominance encounter matrix showing the number of observed
encounters in which individual i dominated individual j.
Using this matrix, various approaches, most based on paired
comparisons or statistical inference, can be applied to re-
construct the linear dominance hierarchy (e.g. Refs. [3], [4],
[5], [6]). However, virtually all of the biological approaches
to discovering hierarchy assume the underlying hierarchy is
linear (i.e. a tree with a branching factor of 1). Furthermore,
these approaches assume that the social network under analysis
is a directed graph (i.e. the dominance encounter matrix).
In many situations, this information is simply not available.
Rather, the data available are in the form of an undirected
graph representing the social network or a directed graph in
which the directed edges may not correspond to dominating
interactions (e.g. email networks).

Discovering hierarchical structure in these cases, where
the graph is not directed or the hierarchy is not linear, has
been a topic of study by sociologists and, more recently,
computer scientists and mathematicians. Much of the work
in this area employs graph-theoretic centrality measures to
reconstruct the hierarchy [7]. Multiple authors such as Memon
et al. [8] have proposed using degree and eigenvector centrality
to reconstruct the hierarchical structure of terrorist networks
under the assumption that higher ranked individuals will have



higher centrality scores. A weighted combination of multiple
such graph-theoretic measures was used in an attempt to infer
the hierarchical rank of employees in the Enron email network
[9]. In [10], a method referred to as canonical analysis of
asymmetry was proposed, but, like biological approaches, it is
restricted to directed graphs and linear orders. More recently,
Kemp et al. [11] have employed Bayesian inference and graph
grammars to reconstruct hierarchy among other structures.

Virtually all of the aforementioned works make fixed
assumptions regarding the interaction patterns among the
individuals in the network with the expectation that these
assumptions hold in all cases. For instance, approaches based
on graph-theoretic centrality measures assume a direct cor-
respondence between hierarchical position and the centrality
measures being considered. We conjecture that the interaction
patterns can vary across different types of social networks,
and this variability can pose problems for existing approaches.
A centrality measure corresponding to hierarchical rank in
one network may not necessarily correspond to rank in a
different type of network. We propose an approach to the
inference of social hierarchy that we show to be more flexible
and robust under variable social interaction patterns. We base
our approach on a treatment of the underlying hierarchy as
a generative model for the network, directly incorporating
the notion that an underlying hierarchy, if exists, shapes the
structure of the social network.

III. HIERARCHIES AS GENERATIVE MODELS

Consider the CEO of a corporation and his or her position
in the organizational chart. Intuitively, the probability of this
CEO interacting with immediate subordinates will be higher
than the probability of interacting with individuals toward the
bottom of the organizational chart, such as the mail room
employee. In our work, we make the basic assumption that
social interactions among a group of individuals in a hierarchy
are influenced by the hierarchical positions of these individ-
uals. As the distance between individuals within a hierarchy
grows, we assume the probability of interaction decays. Under
this assumption, since the frequency and occurrence of social
interactions between two individuals are influenced by their
respective positions in the hierarchy, the underlying hierarchy
can be considered a generative model for the social network.
We now provide some formal definitions of social hierarchies,
interaction models, and the networks derived from them.

Definition 1 (HIERARCHY): A hierarchy is a rooted, di-
rected tree represented by graph, GH = (VH , EH). An edge
(v, w) ∈ EH denotes that v is dominant over w with v being
referred to as the parent and w being referred to as the child.
Two nodes with the same parent are referred to as siblings. If
a path exists from some node v to some node w, then v is an
ancestor of w and w is a descendant of v.

Definition 2 (INTERACTION MODEL): An interaction
model, M , defines the probability of interaction for each of
the

(|VH |
2

)
pairs of vertices or individuals in a hierarchy. Let

PB be the base probability, which is the highest probability
of interaction possible under the model. If a model stipulates

that two nodes either interact rarely or not at all, then the
probability of interaction is set to some relatively small,
non-zero value to represent noise. Let this value be ε.

Definition 3: [PROXIMITY-BASED INTERACTION MODEL]
A proximity-based interaction model is an interaction model
in which the highest rates of interaction are assigned between
parents and their children and between siblings. The interac-
tion probabilities for all other pairs of nodes either decay with
tree distance or remain constant. Note that this definition does
not specify whether it is parents and children or siblings that
have the higher interaction probability.

Having defined a proximity-based interaction model, we now
describe four specific instantiations.

Definition 4 (DIRECT MODEL): In the Direct Model, there
is a direct correspondence between edges in the hierarchy and
edges in the generated network. The probability of interaction
between a parent and its children is set to be the base
probability, PB . For the remaining node pairs in the hierarchy,
the probability of interaction is set to ε.

Definition 5 (DISTANCE MODEL): For pairs of nodes in
the hierarchy that have an ancestor-descendant relationship or
are siblings, the probability of interaction is proportional to
the tree distance (i.e. number of hops) in the hierarchy. All
other pairs of nodes are assigned a probability of ε.

Definition 6 (MANAGER-DRIVEN MODEL): The
Manager-Driven Model is identical to the Distance Model
except the probability of interaction between siblings is
changed to be ε (i.e. team members interact only through
their manager).

Definition 7 (TEAM-DRIVEN MODEL): The Team-Driven
Model is also similar to the Distance Model except the
highest rate of interaction, PB , is assigned to siblings instead
of parents-children. For pairs of nodes having an ancestor-
descendant relationship, the probability of interaction is pro-
portional to distance.

Several points should be made regarding interaction models.
First, although interaction models dictate the probabilities
for interactions, they do not specify a fixed definition of an
interaction. An interaction in an interaction model can be
defined as anything from physical proximity recorded through
GPS to email exchanges. Second, this list of four interaction
models above is not meant to be exhaustive. These are simply
the models defined, chosen, and evaluated in the present work.
Finally, it should also be noted that, in three of the four models
described (all, but the Direct Model), interaction probabilities
for ancestor, descendant, and/or sibling relationships are a
function of tree distance with probabilities decaying with
distance. There are many different functions that may be
chosen for the decay rate in these models. For this paper,
we evaluate two rates of decay: exponential and inverse
linear. The exponential decay of interaction probability is
defined as Pr[(v, w)] = (PB)

dist(v,w) where Pr[(v, w)]
is the interaction probability between nodes v and w



and dist(v, w)1 is tree distance. The inverse linear decay
of interaction probability is defined as Pr[(v, w)] = PB

dist(v,w) .

Definition 8 (HIERARCHY-DERIVED NETWORK): A
hierarchy-derived, social network is a weighted graph
GN = (VN , EN ) where VN = VH and every edge
(v, w) ∈ EN has a weight proportional to the probability
dictated by some interaction model, M , associated with
the hierarchy, GH . This weight, for example, might be the
frequency of social interactions between individuals over
some time period.

We conclude this section with a formal definition of the
problem of inferring hierarchy from a social network..

Definition 9: Given GN , infer both GH and M that gener-
ated GN .

This is a general definition for the problem of inferring
the true underlying hierarchy. In the absence of ground truth
(which necessitates the problem of inference), we look for the
most likely hierarchy.

IV. METHOD

A. Overview

At its core, our approach to the problem employs the use of
model selection with maximum likelihood estimation. We treat
each of the four models above as candidate models. Given the
data GN , under each candidate model, we find the hierarchy
with the maximum log-likelihood using a greedy, iterative
algorithm called Hi-GreeMax (see Algorithm 1) and record its
likelihood score . We, then, rank each candidate model by the
log-likelihood score of the maximum likelihood hierarchy it
produces. Finally, we take the highest ranked candidate model
as the inferred model M and the hierarchy with which it is
associated as our inferred hierarchy GH .

B. Measuring the Likelihood of a Hierarchy

Given a candidate model M , for any two individuals v and
w placed in positions in a hierarchy, the log-likelihood (LL)
for the weight between the pair can be computed as follows:

LL(v, w) = α log(Pr[(v, w)]) + β log(1− (Pr[(v, w)]))
(1)

where

Pr[(v, w)] = probability of interaction (2)
under given candidate model

α = weight(v, w) (3)

β =
1

PB
max

(v1,v2)∈EN

{weight(v1, v2)}

− weight(v, w) (4)

1Nodes v and w here are assumed to have either an ancestor-descendant
relationship or a sibling relationship.

The log-likelihood for an entire hierarchy, then, is:

`(GH |GN ,M) =
∑

v,w∈VN ,v 6=w

LL(v, w) (5)

This likelihood computation can be viewed in terms of a
Bernoulli process or coin-flipping experiment. In our model,
we consider interactions as occurring over a number of trials
with each interaction occurring with some probability. This is
not to say that the actual interactions or associations proceed
in this fashion. This is merely how the data are modeled
in our approach. During each trial, between any two nodes,
an interaction can either occur or not occur (analogous to
heads vs. tails). The edge weights, then, are treated as the
number of successes (e.g. number of heads) shown as α in
the equations above. In order to measure the likelihood, we
require the number of trials in which no interaction occurred
(e.g. number of tails), which is the total number of trials minus
the number of trials interactions occurred. The total number
of trials, however, including the number of trials in which no
interaction took place, may be unknown. Under our model, the
total number of trials can be inferred by dividing the highest
edge weight by the base probability PB . The number of trials
where no interaction took place, shown as β in the equations,
is taken to be the total number of trials minus the edge weight
(i.e. the number of trials interactions occurred). One might
also view our generative model for networks as a variation
of the Erdos-Renyi random graph model in which there is a
non-uniform probability assigned to edge creation [12].

C. Finding the Maximum Likelihood Hierarchy

For a network of n nodes, there are nn−1 possible rooted,
labeled trees (see Chapter 9 in [13]). A simple, brute-force
search for the maximum likelihood hierarchy over all trees
of n nodes, therefore, is infeasible. We propose a simple
greedy iterative algorithm Hi-GreeMax and show that it finds
the maximum likelihood hierarchy. The Hi-GreeMax algorithm
builds the hierarchy by iteratively placing nodes in positions
that maximize the likelihood (see Algorithm 1). The algorithm
accepts as input the network, GN , and a candidate interaction
model, MC . It begins by selecting a single node, seed, around
which the entire hierarchy is constructed. In Algorithm 1, the
node seed is chosen as the node with highest weighted degree
centrality, but this is not a requirement. It should be noted that
seed does not necessarily have to be (and in many cases will
not be) the root of the hierarchy. All the remaining nodes are
chosen such that they maximize the total sum of interactions
with the nodes already chosen.

Once the first three nodes are selected, the FindMaxTriad
procedure performs a quick, exhaustive search over the ten
possible 3-node hierarchy configurations (referred to as triads)
to find the configuration which maximizes the likelihood.
These triads, shown in Figure 1, include the nine, rooted
labeled trees and a tenth configuration where the three nodes
are assumed to be siblings of one another. The remaining
nodes are positioned in the hierarchy by the PlaceInMaxLike-
lihoodPosition procedure. PlaceInMaxLikelihoodPosition tries



Algorithm 1 Hi-GreeMax
1: Input:

Graph GN = (VN , EN )
Candidate Model Mc

2: seed← argmaxv
∑

w∈VN
weight(v, w)

3: placed← {seed}
4: v2 ← argmaxv[

∑
w∈placed weight(v, w)]

5: placed← placed ∪ {v2}
6: v3 ← argmaxv[

∑
w∈placed weight(v, w)]

7: placed← placed ∪ {v3}
8: FindMaxTriad(seed, v2, v3)
9: while |placed| ≤ |VN | do

10: vn ← argmaxv[
∑

w∈placed weight(v, w)]
11: PlaceInMaxLikelihoodPosition(vn)
12: placed← placed ∪ {vn}
13: end while

positioning the new node as either the new root of the partially
constructed hierarchy or a child of one of the existing nodes2.
The position maximizing the likelihood of the hierarchy is
always chosen. This process continues until all nodes are
positioned and the maximum likelihood hierarchy is obtained.

As mentioned previously in Section III, a given candidate
interaction model has additional parameters PB and ε (the base
probability and noise probability, respectively). The parameter
spaces for both PB and ε are appropriately discretized and
quickly searched. The hierarchy returned by Hi-GreeMax,
then, is the maximum likelihood hierarchy produced for a
given candidate model across the discretized, parameter space
of both PB and ε. We now state Theorem 1, the proof for
which shows Hi-GreeMax is optimal.

Theorem 1: Given a proximity-based interaction model as
defined in Definition 3 and a network GN of n vertices, Hi-
GreeMax finds the expected maximum likelihood hierarchy.
Theorem 1 can be shown through a proof by induction. We
omit the proof due to space constraints.

V. EXPERIMENTAL EVALUATION

We validated our approach on both simulated and real-world
datasets. For real-world datasets, we infer the hierarchies of the
George W. Bush administration (2001-2005) and the Barack
H. Obama administration (2009-2013) In all cases, our method
recovered the true, underlying hierarchy.

A. Simulated Datasets

We first randomly generated a hierarchy, GH , of n nodes.
This was done by specifying the maximum branching factor
and the maximum number of nodes for the tree. Then, begin-
ning from the root node, we probabilistically grew the tree
in an iterative fashion. While growing the tree, we selected
the number of children for each node uniformly at random
such that the number of children did not exceed the maximum

2If the triad found by FindMaxTriad is the tenth configuration, PlaceIn-
MaxLikelihoodPosition also tries positioning the new node as an additional
sibling in the partially constructed hierarchy.

Fig. 1. The ten possible triad configurations.

branching factor specified. This process generated mostly non-
complete trees. We also generated complete trees by ensuring
each non-leaf node was assigned a number of children equal
to the specified branching factor. For our experiments, we
generated hierarchies of up to approximately n = 250 nodes
using branching factors of up to 8.

Second, we selected some interaction model M (of those
described in Section III) and randomly generated a network,
GN , based on that model. This was accomplished by first
specifying a number of timesteps, T . Then, at each timestep,
for each of the

(|VH |
2

)
pairs of nodes, an interaction was created

with probability specified by the interaction model, M . The
final edge weight between each pair of nodes, then, was set
to be the total number of interactions created over the T
timesteps. For our experiments, we set T = 500.

Upon generating the network GN , we executed our al-
gorithm to find the maximum likelihood hierarchy under
each candidate interaction model. Under our paradigm, the
candidate model producing the hierarchy with the optimal
likelihood should be the model which generated the network
in the first place (i.e. M ), thereby, providing validation of
our approach. We performed the aforementioned steps for all
interaction models, for various hierarchical configurations and
for various values of n of up to 250.

In all cases, we were able to reconstruct the original
hierarchy perfectly and also infer the generative model, M .
Results for a 63 node hierarchy are shown in Figure 2. Each
group of bars represents results against a network produced
by a particular generative model. Each individual bar shows
the negative log-likelihood of the hierarchy produced by each
candidate model. For ease of illustration, we graph the negative
log-likelihood (lower scores are better) instead of the log-
likelihood. For instance, the first bar in the first group of bars
shows the negative log-likelihood of the hierarchy produced
by the Direct Candidate Model against a network produced
by the Direct Generative Model. As expected, the candidate
model represented by the best (lowest) bar always matches
the generative model. This trend holds for each group in the
figure. Due to space constraints, we only include the results



for the 63 node experiment, but results are similar for larger
and smaller networks under both exponential and inverse linear
rates of decay. This consistency across experiments provides
validation for our approach.
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Fig. 2. Negative Log-Likelihood scores for each candidate model against
each generative model. The candidate model with the best (i.e. smallest) score
in each group is always the same as the generative model and also reconstructs
the original hierarchy perfectly.

B. The George W. Bush Hierarchy

A network of associations among 13 members of the George
W. Bush administration (2001-2005) was obtained from Ref.
[11]. In this network, Google searches were performed on the
string “x told y”, where x and y are names of individuals in
the administration. The weight of an edge between x and y
is, then, the search result count. We converted this directed
network into an undirected network by setting the weight of
each edge (x, y) to be the number of page counts for “x told
y” plus the number of page counts for “y told x”. We are in
no way claiming that proximity of individuals’ names on web
pages are representative of real social interactions between the
individuals. It is our contention, however, that, given that the
occurrence and frequency of an association are influenced by
the underlying hierarchy, this latent hierarchy can be inferred.

Fig. 3. The inferred hierarchy for the Bush administration dataset produced
by the Direct Model.

Figure 3 shows the inferred Bush hierarchy produced by the
Direct Model. As can be seen, this inferred hierarchy closely
matches the actual reporting relationships of the Bush admin-
istration. The most salient misplaced link is between Bush
and Wolfowitz. Wolfowitz, whose position at the time was
Deputy Secretary of Defense, should be shown as reporting to
Defense Secretary Rumsfeld instead of Bush. In the underlying
weighted network, however, the weight between Wolfowitz
and Rumsfeld is only 2 whereas the weight between Wolfowitz
and Bush is 132. Given the data, it would be impossible for
any algorithm to deduce the correct link in this case.

Interestingly, the interaction model producing the best likeli-
hood, as shown in Table I, is the Team Model with exponential
decay. The hierarchy produced by the Team Model, however,
does not closely match the real reporting relationships as the
Direct Model does. Why, then, should the Team Model exhibit
a better likelihood? We have identified a number of reasons
for this model exhibiting the best likelihood some of which
have to do with problems relating to the collection process
of the dataset itself (e.g. name ambiguity and pre-processing
issues). For instance, we surmise that the association frequency
between Bush and Powell is inflated due to name ambiguity.
In addition to serving as Secretary of State under George W.
Bush, Powell also served as Chairman of the Joint Chiefs of
Staff under the first President Bush (George H. W. Bush, U.S.
President from 1989-1993). We address these and other issues
in the next section.

C. The Barack H. Obama Hierarchy

We collected a network of associations among 14 members
of the Obama administration3. To address the aforementioned
data collection issues present in the Bush dataset, we collected
the data following a different process. First, instead of using
search strings of the form “x told y”, we used the Google
word proximity operator to find the number of pages where
the names were within two words of eachother. Second, to
avoid issues related to name ambiguity and the inclusion of
older pages not directly relevant to the administration (e.g.
documentation of the Obama-Clinton rivalry during the 2008
Democratic primary), we included current job titles in the
search. Finally, we normalized search counts by dividing each
page count by min(count(x), count(y)) where count(·) is the
page count for a single name.

Table II shows the results. The candidate model producing
the best log-likelihood of −2032 is the Manager Model with
inverse linear decay. The hierarchy produced by this model,
which again closely matches the actual reporting relationships,
is shown in Figure 4. As with Wolfowitz in the Bush dataset,
Flournoy, Under Secretary for Defense Policy, is incorrectly
linked to Obama instead of Defense Secretary Gates. The
remaining reporting relationships, however, are accurate and
closely match the actual Obama administration, as shown in
Figure 4. Finally, the candidate model exhibiting the worst

3Collected on April 28, 2009. Note that the revised collection process for
this dataset mitigated issues such as name ambiguity, but did not completely
eliminate them.



Direct Distance Manager Team
Exponential Inv. Linear Exponential Inv. Linear Exponential Inv. Linear

Log-Likelihood -64179 -75405 -91251 -69528 -66559 -48736 -62832
Inferred PB .45 .2 .4 .5 .45 .3 .95
Inferred ε .001 .001 .001 .001 .001 .001 .001

TABLE I
PERFORMANCE OF EACH INTERACTION MODEL AGAINST THE BUSH HIERARCHY

Direct Distance Manager Team
Exponential Inv. Linear Exponential Inv. Linear Exponential Inv. Linear

Log-Likelihood -2145 -2200 -2307 -2384 -2032 -2441 -2443
Inferred PB .35 .25 .25 .35 .35 .45 .25
Inferred ε .01 .01 .01 .01 .01 .01 .01

TABLE II
PERFORMANCE OF EACH INTERACTION MODEL AGAINST THE OBAMA HIERARCHY

likelihood was the Team Model. The hierarchy produced by the
Team Model (with both inverse linear and exponential decay)
was not consistent with the actual Obama hierarchy and did
not account for the data well at all.

By mitigating issues such as name ambiguity, the previ-
ously mentioned discrepancies resulting from the Bush dataset
are eliminated, and the candidate model producing the best
likelihood (i.e. Manager Model) is correctly associated with
the hierarchy most closely matching the actual reporting
relationships in the Obama administration. Both the model M
and the hierarchy GH are inferred with accuracy, which is
consistent with our results for the simulated datasets.

Fig. 4. The inferred hierarchy for the Obama administration dataset produced
by the Manager Model with Inverse Linear Decay.

VI. CONCLUSION

We have proposed a novel method for inferring both so-
cial hierarchies from networks and the generative interaction
models that may give rise to the networks. We proposed
four models of generating a social network from hierarchical
structure. Our method optimally infers the maximum like-
lihood hierarchy in a given network using a simple greedy
algorithm. We have validated our approach on both synthetic
and real-world datasets and have shown that our method
applies in a more general context than previously proposed
techniques. It is the only approach that can infer hierarchy
from any undirected weighted network. Moreover, it is the only
approach that identifies the most likely style of interactions
among individuals in the hierarchy. Our results indicate that
hierarchies can be inferred from associations among entities

in a network, given that the occurrence and frequency of these
associations are influenced by the underlying hierarchy. In the
future, we plan to extend our generative interaction models to
include variable probabilities of interactions that depend on
the levels of the individuals in the hierarchy.
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